High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (2024)

High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (1) https://doi.org/10.1016/j.vacuum.2023.111940

Journal: Vacuum, 2023, p.111940

Publisher: Elsevier BV

Authors:

  1. Jinkui Cai
  2. Wenli Zhang
  3. Ying Tang
  4. Jing Zhong
  5. Lijun Zhang
  6. Xingchuan Xia
  7. Jian Ding

Funders

  1. National Natural Science Foundation of China
  2. Hubei University of Technology
  3. National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials

List of references

  1. Huang, The influence of precipitation transformation on Young's modulus and strengthening mechanism of a Cu-Be binary alloy, Mater. Sci. Eng. A, № 772
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (2) https://doi.org/10.1016/j.msea.2019.138592
  2. Xie, The precipitation behavior and strengthening of a Cu-2.0 wt% Be alloy, Mater. Sci. Eng. A, № 558, с. 326
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (3) https://doi.org/10.1016/j.msea.2012.08.007
  3. Millett, The effects of heat treatment upon the shock response of a copper-beryllium alloy, Acta Mater., № 165, с. 678
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (4) https://doi.org/10.1016/j.actamat.2013.01.021
  4. Zhou, A novel Cu-Ni-Zn-Al alloy with high strength through precipitation hardening, Mater. Sci. Eng. A, № 527, с. 5153
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (5) https://doi.org/10.1016/j.msea.2010.04.089
  5. Zhou, Effect of aluminum on precipitation hardening in Cu-Ni-Zn alloys, J. Mater. Sci., № 45, с. 3080
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (6) https://doi.org/10.1007/s10853-010-4315-9
  6. Gao, Machine learning accelerated design of non-equiatomic refractory high entropy alloys based on first principles calculation, Vacuum, № 207
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (7) https://doi.org/10.1016/j.vacuum.2022.111608
  7. Tang, Investigation of microstructure and mechanical properties of novel MgLiAlZnY–TiB alloys based on secondary phase prediction by first principle, Vacuum, № 192
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (8) https://doi.org/10.1016/j.vacuum.2021.110416
  8. Ta, Design of the precipitation process for Ni-Al alloys with optimal mechanical properties: a phase-field study, Metall. Mater. Trans. A, № 45, с. 1787
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (9) https://doi.org/10.1007/s11661-014-2192-6
  9. Nguyen, Quantification of rafting of γ’ precipitates in Ni-based superalloys, Acta Mater., № 103, с. 322
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (10) https://doi.org/10.1016/j.actamat.2015.09.060
  10. Zhang, Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation, Acta Mater., № 88, с. 156
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (11) https://doi.org/10.1016/j.actamat.2014.11.037
  11. Chen, Modeling precipitation kinetics during heat treatment with Calphad-based tools, J. Mater. Eng. Perform., № 23, с. 4193
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (12) https://doi.org/10.1007/s11665-014-1255-6
  12. Tang, Kinetic simulations of diffusion-controlled phase transformations in Cu-based alloys, с. 1
  13. Kirkaldy, Diffusion in multicomponent metallic systems, Can. J. Phys., № 35, с. 435
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (13) https://doi.org/10.1139/p57-047
  14. Kirkaldy, Diffusion in multicomponent metallic systems: VII. Solutions of the multicomponent diffusion equations with variable coefficients, Can. J. Phys., № 41, с. 2174
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (14) https://doi.org/10.1139/p63-212
  15. Kirkaldy, Diffusion in multicomponent metallic systems: VI. Some thermodynamic properties of the matrix and the corresponding solutions of the diffusion equations, Can. J. Phys., № 41, с. 2166
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (15) https://doi.org/10.1139/p63-211
  16. Bouchet, A numerical inverse method for calculating the interdiffusion coefficients along a diffusion path in ternary systems, Acta Mater., № 50, с. 4887
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (16) https://doi.org/10.1016/S1359-6454(02)00358-0
  17. Kucza, A combinatorial approach for extracting thermo-kinetic parameters from diffusion profiles, Scripta Mater., № 66, с. 151
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (17) https://doi.org/10.1016/j.scriptamat.2011.10.025
  18. Zhang, Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method, Intermetallics, № 34, с. 132
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (18) https://doi.org/10.1016/j.intermet.2012.11.012
  19. Chen, An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple, MRS Commun, № 6, с. 295
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (19) https://doi.org/10.1557/mrc.2016.21
  20. Chen, A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple, Scripta Mater., № 90, с. 53
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (20) https://doi.org/10.1016/j.scriptamat.2014.07.016
  21. Chen, Diffusion behavior of fcc and L12 Ni–Al–Cr alloys, Vacuum, № 189
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (21) https://doi.org/10.1016/j.vacuum.2021.110238
  22. Yin, Microstructure evolution and interdiffusion of PtAl coated a third generation single crystal superalloy during thermal exposure, Vacuum
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (22) https://doi.org/10.1016/j.vacuum.2022.111225
  23. Sohrabi, Interdiffusion coefficients of alloying elements in a typical Ni-based superalloy, Vacuum, № 169
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (23) https://doi.org/10.1016/j.vacuum.2019.108875
  24. Liu, High-throughput determination of interdiffusivity matrices in Ni-Al-Ti-Cr-Co-Mo-Ta-W multicomponent superalloys and their application in optimization of creep resistance, Mater. Today Commun., № 24
  25. Chen, High-throughput determination of interdiffusion coefficients for Co-Cr-Fe-Mn-Ni high-entropy Alloys, J. Phase Equilibria Diffus., № 38, с. 457
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (24) https://doi.org/10.1007/s11669-017-0569-0
  26. Peng, Effect of Mo on interdiffusion behaviors and interfacial characteristics in multicomponent diffusion couple of Fe-Co-Cr-Ni high entropy alloys and diamond, Mater. Des., № 215
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (25) https://doi.org/10.1016/j.matdes.2022.110522
  27. Wen, High-throughput determination of the composition-dependent mechanical and diffusion properties in β Ti-Nb-Zr-Hf refractory alloys, J. Alloys Compd., № 876
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (26) https://doi.org/10.1016/j.jallcom.2021.160150
  28. Zhang, High-throughput determination of composition-dependent interdiffusivity matrices and atomic mobilities in fcc Cu-Ni-Al alloys by combining diffusion couple experiments with HitDIC modeling, Metall. Mater. Trans. A, № 52, с. 2331
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (27) https://doi.org/10.1007/s11661-021-06224-6
  29. Tang, Development of atomic mobility with quantified uncertainties directly from concentration profiles: a demo in fcc Cu-Ni-Sn system, J. Mater. Sci., № 57, с. 3757
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (28) https://doi.org/10.1007/s10853-021-06823-z
  30. Chen, Developing thermodynamic and kinetic databases for Cu-based alloy design, J. Jap. Inst. Copper, № 59, с. 7
  31. Cui, Assessment of atomic mobilities in fcc Cu-Ni-Zn alloys, Calphad, № 35, с. 231
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (29) https://doi.org/10.1016/j.calphad.2010.10.002
  32. Chang, Assessment of the atomic mobilities for ternary Al-Cu-Zn fcc alloys, Calphad, № 34, с. 68
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (30) https://doi.org/10.1016/j.calphad.2009.12.002
  33. Zhong, HitDIC: a free-accessible code for high-throughput determination of interdiffusion coefficients in single solution phase, Calphad, № 60, с. 177
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (31) https://doi.org/10.1016/j.calphad.2017.12.004
  34. Takahashi, Interdiffusion in the α solid solutions of Al-Cu-Zn system at 817 K, Tran, Jap. Inst. Metal., № 44, с. 69
  35. Takahashi, Interdiffusion in α solid solutions of Cu-Al-Zn system, Tran. Jap. Inst. Metal., № 26, с. 462
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (32) https://doi.org/10.2320/matertrans1960.26.462
  36. Kim, Formation and behavior of Kirkendall voids within intermetallic layers of solder joints, J. Mater. Sci., № 22, с. 703
  37. Ghosh, Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints, Acta Mater., № 49, с. 2609
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (33) https://doi.org/10.1016/S1359-6454(01)00187-2
  38. Liu, Assessment of atomic mobilities of Al and Cu in fcc Al-Cu alloys, Calphad, № 33, с. 761
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (34) https://doi.org/10.1016/j.calphad.2009.10.004
  39. Zhang, Atomic mobility, diffusivity and diffusion growth simulation for fcc Cu-Mn-Ni alloys, Calphad, № 35, с. 367
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (35) https://doi.org/10.1016/j.calphad.2011.04.009
  40. Zhang, Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system, Int. J. Mater. Res., № 101, с. 1461
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (36) https://doi.org/10.3139/146.110428
  41. Cui, Assessment of atomic mobilities in fcc Al-Zn and Ni-Zn alloys, Calphad, № 34, с. 446
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (37) https://doi.org/10.1016/j.calphad.2010.08.002
  42. Cui, Study of diffusion mobility of Al−Zn solid solution, J. Phase Equilibria Diffus., № 27, с. 333
  43. Du, Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation, Mater. Sci. Eng. A, № 363, с. 140
    High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (38) https://doi.org/10.1016/S0921-5093(03)00624-5

Publications that cite this publication

Differential effects of Sn and Si solutes on the microstructure and properties of Cu–Ni–Al alloys with coherent L12-γ′ phases

Z.M. Li, W.L. Meng, Y.L. Hu, Y.H. Zheng, R.W. Liu, J.S. Li, T. Liu, Q. Liu, X.N. Li

High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (39) https://doi.org/10.1016/j.vacuum.2023.112355

High temperature tribological properties of the high-hardness wear-resistant Cu-Ni-Al-Sn coatings produced by laser cladding

Zhiming Chen, Hui Tan, Qichun Sun, Wenyuan Chen, Shengyu Zhu, Jun Cheng, Jun Yang

High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (40) https://doi.org/10.1016/j.triboint.2024.109645 · High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (41)

2024, Tribology International, p.109645

Scopus

WoS

Crossref citations:0

High-throughput determination of the interdiffusion coefficients and atomic mobilities in bcc Ti–Fe–V alloys

Hongyu Zhang, Ping Ding, Jing Zhong, Weimin Bai, Maohua Rong, Jiang Wang, Lijun Zhang, Ligang Zhang, Libin Liu

High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (42) https://doi.org/10.1016/j.vacuum.2024.113161

2024, Vacuum, p.113161

Scopus

WoS

Crossref citations:0

Find all citations of the publication

About this publication

Number of citations 1
Number of works in the list of references 43
Journal indexed in Scopus Yes
Journal indexed in Web of Science Yes
High-throughput determination of the interdiffusion coefficients in fcc Cu–Ni–Al–Zn alloys (2024)

References

Top Articles
Latest Posts
Article information

Author: Margart Wisoky

Last Updated:

Views: 5865

Rating: 4.8 / 5 (78 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Margart Wisoky

Birthday: 1993-05-13

Address: 2113 Abernathy Knoll, New Tamerafurt, CT 66893-2169

Phone: +25815234346805

Job: Central Developer

Hobby: Machining, Pottery, Rafting, Cosplaying, Jogging, Taekwondo, Scouting

Introduction: My name is Margart Wisoky, I am a gorgeous, shiny, successful, beautiful, adventurous, excited, pleasant person who loves writing and wants to share my knowledge and understanding with you.